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A general method for the synthesis of benzimidazole-4-sulfonamides is described. This methodology
employs commercially available benzothiadiazole-4-sulfonyl chloride as a benzimidazole equivalent.
Reaction with a variety of amines followed by highly chemoselective reductive desulfurization gives
intermediate 1,2-phenylenediamines, which may then react with aryl, heteroaryl, and alkyl aldehydes
to provide substituted benzimidazole sulfonamides.
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The sulfonamide functional group has a long and rich history in
organic chemistry and drug discovery. Beginning with the discov-
ery of the ‘sulfa’ antibiotics in the 1930s that revolutionized the
treatment of bacterial infections (Prontosil Rubrum, 1), and contin-
uing into the present day with the development of potent anti-ret-
rovirals used to treat patients infected with HIV (Prezista, 2),
sulfonamides remain a particularly important class of compounds
for the treatment of infectious diseases (Fig. 1).1–3

However, the use of sulfonamides as medicinal agents is not
limited to the realm of infectious diseases; for example, as early
as the 1950s certain sulfonamides were discovered to be effective
treatments for hypertension and congestive heart failure (e.g., diu-
ril, 3).1 Similarly, the benzimidazole ring system is also of long-
standing medicinal importance. Examples of widely used classes
of drugs containing the benzimidazole ring system include anthel-
mintics (albendazole, 4) and proton pump inhibitors (omeprazole,
5).4,5 Additional examples of the utility of benzimidazole com-
pounds include, among others, H4 receptor antagonists,6

N-methyl-D-aspartate receptor antagonists,7 and hepatitis C RNA
polymerase inhibitors.8

During the course of our investigation of cholecystokinin-2
receptor (CCK2-R) antagonists, we required benzimidazole sulfon-
amide 6 (Scheme 1).9 Despite the voluminous body of literature
devoted to the benzimidazole ring system, we were unable to find
a straightforward method for the preparation of benzimidazole-4-
sulfonamides. It is immediately apparent that the key problem is
that the hypothetical reagent benzimidazole-4-sulfonyl chloride
7 does not exist due to the incompatibility of the benzimidazole
nitrogen atom with sulfonyl chlorides, and to the best of our
knowledge a suitable substitute has not been developed. We
reasoned that commercially available 2,1,3-benzothiadiazole-4-
sulfonyl chloride 8 could serve as an effective benzimidazole-2-
sulfonamide synthon, and thus enable a synthesis of this class of
ll rights reserved.
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heterocyclic compounds. Herein, we report the development of a
general method for the conversion of commercially available
2,1,3-benzothiadiazole 8 into a wide variety of benzimidazole
sulfonamides.

Our investigation began with the preparation of known 2,1,3-
benzothiadiazoles 9, 10, and 11, which represent aryl, benzyl,
and alkyl-substituted sulfonamides (Scheme 2).10 We were aware
from the outset that extrusion of sulfur from 2,1,3-benzothiadiaz-
oles typically requires the use of strong reducing agents such as
LiAlH4, and therefore a key challenge would be achieving chemose-
lectivity for the benzothiadiazole ring in the presence of the reduc-
tively labile sulfonamide group.11
4: albendazole
(anthelmetic)

5: omeprazole
(gastric reflux)

Figure 1. Drugs containing the sulfonamide or benzimidazole functional groups.
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Scheme 2. 2,1,3-Benzothiadiazole sulfonamide substrates. Table 2
Conversion of phenylenediamine 12 to benzimidazoles 13a–i

S
NHPhO

O

12

RCHO (1.05 eq)
Na2S2O5, DMA

80 °C, 16 h N
H

N
R

13a-i

Compound R Yield (%)

13a Ha 73
13b Ph 88
13c 3-Methoxyphenyl 52
13d 4-Methoxyphenyl 82
13e 2-Chlorophenyl 72
13f 4-Chlorophenyl 83
13g 4-Pyridyl 81
13h tert-Butyl 66
13i n-Pentyl 57

a Prepared using neat CH(OMe)3, reflux, 1 h.
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Scheme 1. Benzimidazole-4-sulfonamide CCK2-R antagonist.

Table 3
Conversion of 2,1,3-benzothiadiazoles 10 and 11 to benzimidazoles 16a–g and 17a–g

Zn, AcOH
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O
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N
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Using sulfonamide 9 as a test substrate, we surveyed various
reducing agents in order to effect excision of the ring sulfur atom
while leaving the sulfonamide moiety intact (Table 1). The use of
LiAlH4 led to both reduction of the benzothiadiazole ring and scis-
sion of the S–N bond of the sulfonamide (entry 1).11 Treatment of 9
with magnesium turnings and refluxing methanol returned un-
changed starting material (entry 2), possibly due to competitive
deprotonation of the acidic sulfonamide NH proton that may ren-
der the substrate inert to reduction under these conditions.12 The
reagent combination NaBH4/CoCl2 provided the desired phenyl-
enediamine 12 in modest yield (entry 3), although reduction of
the sulfonamide N-S bond was also observed.13 While Sn/HCl also
produced 12 in modest yield, isolation of the product proved prob-
lematic due to persistent tin emulsions (entry 4). Fortunately,
exposure of 9 to zinc and acetic acid at 50 �C for 1 h provided high
yields of 12 (entry 5), which could be conveniently isolated as the
stable hydrochloride salt in 84% yield after subsequent treatment
with 4 M HCl in dioxane.14

Having found a reliable method for the chemoselective reduc-
tion of the 2,1,3-benzothiadiazole ring, we turned our attention
to the conversion of phenylenediamine sulfonamide 12 to substi-
tuted benzimidazoles. We found that the reaction of 12 with a vari-
ety of aryl, heteroaryl, and alkyl aldehydes proceeded smoothly in
the presence of Na2S2O5 as an oxidant, providing 2-substituted
Table 1
Reduction of 2,1,3-benzothiadiazole 9 to phenylenediamine 12

S
NHPhO

O

9

12

NH2

NH2

conditions

Entry Reagents and conditions Yield (%)

1 LiAlH4, Et2O, 23 �C <5
2 Mg, MeOH, reflux, 16 h <5
3 NaBH4/CoCl2, EtOH, reflux, 1 h 27
4 Sn/HCl, 50 �C, 2 h 38
5 Zn/AcOH, 50 �C, 1 h 84
benzimidazole-4-sulfonamides in yields ranging from 57% to 88%
(Table 2).15

We next examined the cognate transformation of 2,1,3-benzo-
thiadiazole-4-sulfonamides 10 and 11 to their corresponding benz-
imidazole-4-sulfonamides (Table 3). It should be noted that while
10 has three reductively labile functional groups (N-benzyl, sulfon-
amide N–S, and benzothiadiazole ring), conversion to the phenyl-
enediamine proceeds with high chemoselectivity. Thus, reduction
of 10 and 11 with zinc metal and acetic acid provided diamines
14 and 15 in yields of 76% and 80%, respectively. Oxidative conden-
sation with aldehydes in the presence of Na2S2O5 gave the desired
benzimidazole-2-sulfonamides 16a–g and 17a–g in generally good
yield (37–94%).

In summary, an efficient and general method for the synthesis of
benzimidazole-4-sulfonamides was developed.16,17 This methodol-
ogy utilizes commercially available 2,1,3-benzothiadiazole-4-sulfo-
nyl chloride as a benzimidazole-4-sulfonyl chloride synthon. Mild
and chemoselective conditions for reduction of the benzothiadiazole
ring in the presence of sulfonamide and benzyl functional groups
were developed, and subsequent conversion of the intermediate
NH2 H
14: R1 = NHBn (76%)
15: R1 = N-piperidinyl (80%)

16a-g
17a-g

Compound R1 R2 Yield (%)

16a

N
H

Ph 79
16b 4-Methoxyphenyl 77
16c 3-Methoxyphenyl 49
16d 4-Chlorophenyl 76
16e 2-Chlorophenyl 74
16f tert-Butyl 67
16g n-Pentyl 70

17a

N
Ph 94

17b 4-Methoxyphenyl 79
17c 3-Methoxyphenyl 76
17d 4-Chlorophenyl 87
17e 2-Chlorophenyl 70
17f tert-Butyl 82
17g n-Pentyl 37
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phenylenediamines into fully functionalized benzimidazole-4-sul-
fonamides was demonstrated. This methodology is tolerant of a wide
variety of aryl, heteroaryl, and alkyl substitution, and is suitable for
the preparation of diverse sets of benzimidazole sulfonamides.
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